Cholesterol binding at the cholesterol recognition/ interaction amino acid consensus (CRAC) of the peripheral-type benzodiazepine receptor and inhibition of steroidogenesis by an HIV TAT-CRAC peptide.
نویسندگان
چکیده
We previously defined a cholesterol recognition/interaction amino acid consensus (CRAC; ATVLNYYVWRDNS) in the carboxyl terminus of the peripheral-type benzodiazepine receptor (PBR), an outer mitochondrial membrane protein involved in the regulation of cholesterol transport into the mitochondria, the rate-determining step in steroid biosynthesis. We examined (i) the PBR-cholesterol interaction by UV crosslinking of the C17 side-chain containing progestin, promegestone, and (ii) the role of the CRAC domain of PBR in Leydig cell steroidogenesis by using a transducible peptide composed of the TAT domain of HIV and the CRAC domain of PBR. [(3)H]Promegestone photoincorporated into recombinant PBR, and this labeling was displaced by cholesterol. [(3)H]Promegestone also photoincorporated into the TAT-CRAC peptide. [(3)H]Promegestone crosslinking to TAT-CRAC could be displaced by cholesterol and promegestone, with IC50 values of 1 and 200 microM, respectively. TAT-CRAC efficiently transduced into MA-10 Leydig cells and inhibited the hCG- and cAMP-stimulated steroid production in a dose-dependent manner. TAT-CRAC did not affect the hCG-induced cAMP synthesis and the 22R-hydroxycholesterol-supported steroidogenesis. Mutated TAT-CRAC lost its ability to bind [(3)H]promegestone and to inhibit the hCG-stimulated steroidogenesis. These results show that TAT-CRAC binds cholesterol and competes for cholesterol interaction with endogenous PBR, suggesting that the cytosolic carboxyl-terminal domain of PBR is responsible for taking up and bringing steroidogenic cholesterol into the mitochondria.
منابع مشابه
Novel androstenetriol interacts with the mitochondrial translocator protein and controls steroidogenesis.
Steroid hormones are metabolically derived from multiple enzymatic transformations of cholesterol. The controlling step in steroid hormone biogenesis is the delivery of cholesterol from intracellular stores to the cytochrome P450 enzyme CYP11A1 in the mitochondrial matrix. The 18-kDa translocator protein (TSPO) plays an integral part in this mitochondrial cholesterol transport. Consistent with ...
متن کاملAggregatibacter actinomycetemcomitans leukotoxin utilizes a cholesterol recognition/amino acid consensus site for membrane association.
Aggregatibacter actinomycetemcomitans produces a repeats-in-toxin (RTX) leukotoxin (LtxA) that selectively kills human immune cells. Binding of LtxA to its β2 integrin receptor (lymphocyte function-associated antigen-1 (LFA-1)) results in the clustering of the toxin·receptor complex in lipid rafts. Clustering occurs only in the presence of LFA-1 and cholesterol, and LtxA is unable to kill cells...
متن کاملEffect of the CRAC Peptide, VLNYYVW, on mPTP Opening in Rat Brain and Liver Mitochondria
The translocator protein (TSPO; 18 kDa) is a high-affinity cholesterol-binding protein located in the outer membrane of mitochondria. A domain in the C-terminus of TSPO was characterized as the cholesterol recognition/interaction amino acid consensus (CRAC). The ability of the CRAC domain to bind to cholesterol led us to hypothesize that this peptide may participate in the regulation of mitocho...
متن کاملIdentification of cholesterol recognition amino acid consensus (CRAC) motif in G-protein coupled receptors.
G-protein coupled receptors (GPCRs) are the largest class of molecules involved in signal transduction across membranes, and represent major targets in the development of novel drug candidates in all clinical areas. Membrane cholesterol has been reported to have an important role in the function of a number of GPCRs. Several structural features of proteins, believed to result in preferential as...
متن کاملDisorder in Cholesterol-Binding Functionality of CRAC Peptides: A Molecular Dynamics Study
The cholesterol recognition/interaction amino acid consensus (CRAC) motif is a primary structure pattern used to identify regions that may be responsible for preferential cholesterol binding in many proteins. The leukotoxin LtxA, which is produced by a pathogenic bacterium, contains two CRAC seqences, only one of which is responsible for cholesterol binding, and the binding is required for cyto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 3 شماره
صفحات -
تاریخ انتشار 2001